欢迎访问上海零露仪器设备有限公司官方网站!客户对每件产品的放心和满意是我们一生的追求,用我们的努力,解决您的烦恼!
Banner
当前位置:首页 > 客户论文

原位电化学红外附件部分客户发表论文


  1. An-Hui Lu, Guang-Ping Hao* et al. Selective oxygen-doping in self-supportive carbon electrode by electrochemical oxidation for electrocatalytic synthesis of hydrogen peroxide. Chemical Physics Letters 843 (2024) 141236

  2. Wei Liu*, Feng Ju*, Yan tao Shi* et al. Uncovering Dynamic Edge-Sites in Atomic Co-N-C Electrocatalyst  for Selective Hydrogen Peroxide Production. Angew. Chem. Int.Ed.2023,e202304754(1of9)

  3. Guang-Ping Hao*, An-Hui Lu* et al. Boundary-Rich Carbon-Based Electrocatalysts with Manganese(II)-Coordinated Active Environmentf or Selective Synthesis of Hydrogen Peroxide. Angew.Chem. Int.Ed.2024,63,e202317660(1of9)

  4. Rui-Ting Gao*, Lei Wang* et al. Electrochemical Nitrate Reduction to Ammonia on AuCu Single- Atom Alloy Aerogels under Wide Potential Window. Angew.Chem. Int.Ed.2025,64,e202415975(1of10)

  5. Rui-Ting Gao*, Limin Wu *, Lei Wang* et al. Re and Ru Co-Doped Transition Metal Alloy as a Bifunctional Catalyst for Electrooxidation of Glycerol to Formate Coupled with H2 Production. Angew. Chem. Int. Ed. 2025, e202501766

  6. Fuxian Wang* et al. Simultaneous co-Photocatalytic CO2  reduction and Ethanol Oxidation towards synergistic acetaldehyde synthesis. Angew.Chem. Int.Ed. Volume 62, Issue 13 e20221872

  7. Likai Wan*, Jun Yan*, Chao Liu* et al. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO2 Electroreduction Catalyst toward Hydrocarbons. J.Am.Chem.Soc.XXXX,XXX,XXX−XXX

  8. Xiaofu Sun*, Buxing Han* et al. Atomically Dispersed Ni–Cu Catalysts for pH-Universal CO2 Electroreduction. Adv. Mater. 2023, 35, 2209590

  9. Xiao fu Sun*, Bu xing Han* et al. Boosting Electrocatalytic Nitrate-to-Ammonia via Tuning of N-Intermediate Adsorption on a Zn-Cu Catalyst. Angew.Chem. Int.Ed. 2023,62,e202307952

  10. Xiao fu Sun*, Bu xing Han* et al. CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La Cu spheres with channels. Nature Communications (2024) 15:4821

  11. Qing Tang*, Likai Wang*, Chao Liua* et al. Atomic-Level Engineering of Single Ag1+  Sites Distribution on Titanium-Oxo Cluster Surface to Boost CO2 Electroreduction. J. Name. 2013, 00, 1-3 , 1

  12. Guang-Ping Hao*, An-Hui Lu* et al. Mesoporous Fe-Doped Carbon Electrocatalysts with Highly Exposed Active Sites for Efficient Synthesis of Hydrogen Peroxide and Tandem Epoxidation of  Propene. Renewables 2023, 1, 562–571

  13. Li song Chen*, Jian lin Shi* et al. Electro-acidic Catalytic Cascade Reactions for the Efficient and Highly Selective Synthesis of Oxygen Heterocyclic Compounds from Ethylene Glycol. CCS Chem. 2024,

  14. Rui-Ting Gao*, Lei Wang* et al. Electro chemical Nitrat eReduction to Ammonia on AuCu ingle Atom Alloy Aerogels under Wide Potential Window. Angew.Chem. Int.Ed. 2025,64,e202415975

  15. Lisong Chen *, Jianlin Shi* et al. Enhanced electrocatalytic glycerol oxidation on CuCoN0.6/CP at significantly reduced potentials. Chinese Journal of Catalysis . 53 (2023) 143–152 

  16. Ying Gao *, Bo-Hang Zhao *, Bin Zhang* et al. CeO2 Modification Promotes the Oxidation Kinetics for Adipic Acid Electrosynthesis from KA Oil Oxidation at 200 mAcm-2. Angew.Chem. Int.Ed. 2025,e202423432

  17. Lisong Chena *, Jianlin Shi* et al. Hydrogen anode/cathode co-productions-coupled anode alcohol selective oxidation and distinctive H/e transfer pathways.Applied Catalysis B: Environmental.Volume 331, 15 August 2023, 122664

  18. Xiaofu Sun *, Buxing Han* et al. Improving CO2-to-C2+  Product Electroreduction Efficiency via Atomic Lanthanide Dopant-Induced Tensile-Strained CuOx Catalysts. J.Am.Chem.Soc. 2023,145,9857−9866

  19. Tanyuan Wang*, Bolong Huang*, Qing Li* et al. Triggering the dual-metal-site lattice oxygen mechanism with in-situ generated Mn3+ sites for enhanced acidic oxygen evolution. J. Am. Chem. Soc. 2024, 146, 48, 33276–33287

  20. Haoshen Zhou*, Miao Zhong* et al. Sustainable Electrosynthesis of N,N-Dimethylformamide via Relay Catalysis on Synergistic Active Sites. J. Am. Chem. Soc. 2024,146,21968−21976

  21. Fuxian Wang* et al. Simultaneous co-Photocatalytic CO2 Reduction and Ethanol Oxidation towards Synergistic Acetaldehyde Synthesis. Angew.Chem. Int.Ed.2023,e202218720(1of8)

  22. Fanglin Che*, Miao Zhong* et al. Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies. Nature Communications (2024) 15:1711

  23. Xiaofu Sun*,  Buxing Han* et al. Oxophilicity-Controlled CO2 Electroreductionto C2+ Alcohols over Lewis Acid Metal-Doped Cuδ+ Catalysts. J.Am.Chem.Soc.2023,145,21945−21954

  24. Lisong Chen*, Jianlin Shi* et al. Pd/NiMoO4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate. Nature Communications (2024) 15:2899

  25. Xiaofu Su*, Buxing Han* et al. CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La Cu spheres with channels. Nature Communications (2024) 15:4821

  26. Xiaofu Sun*, Buxing Han* et al. Upgrading of nitrate to hydrazine through cascading electrocatalytic ammonia production with controllable N-N coupling. Nature Communications (2024) 15:8567

  27. Junwang Tang* et al. Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts.Nature Energy.  volume 8, pages1013–1022 (2023)

  28. Xiaofu Sun*, Buxing Han* et al. Synthesis of Hydroxylamine via Ketone-MediatedNitrate Electroreduction . J. Am. Chem. Soc. 2024, 146, 15, 10934–10942

  29. Ying Gao*, Bin Zhang* et al. In Situ Probing the Anion-Widened Anodic Electric Double Layer for Enhanced Faradaic Efficiency of Chlorine-Involved Reactions. J.Am.Chem.Soc.2025,147,6698−6706

  30. Jianping Xiao*, Bin Zhang* et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 2020, 11, 3415

  31. Lei Yan, Yonggang Wang* et al. Chemically Self-Charging Aqueous Zinc-Organic Battery. J. Am. Chem. Soc. 2021, 143, 15369-15377 

  32. Bingliang Wang, Yongyao Xia* et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200-2208

  33. Yang Peng* et al. Breaking Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. Angew. Chem. Int. Ed. 2021, 60, 2508-2518 

  34. Zhuo Yu, Yonggang Wang* et al. Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. Adv. Energy Mater. 2020, 10, 2000907

  35. Xinwei Ding, Zhi Yang* et al. Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2003354 

  36. Hong Guo*, Xueliang Sun* et al. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Lett. 2020, 5, 1022-1031

  37. Bin Zhang* et al. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for COElectroreduction. ACS Catal. 2019, 9, 10983-10989 

  38. Suya Zhou, Zhi Yang* et al. Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Nano. 2020, 14, 7538–7551

  39. Yongyao Xia*, et al. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Adv. Sci. 2020, 7, 2000196

  40. Lei Wang*, Yonggang Wang* et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials. 2020, 26, 593-603

  41. Bin Zhang* et al. Unveiling in situ evolved In/In2O3− x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Science Bulletin. 2020, 65, 1547-1554

  42. Huani Li, Shubiao Xia*, Hong Guo* et al. Red Phosphorus Confined in Hierarchical Hollow Surface-Modified Co9S8 for Enhanced Sodium Storage. Sustainable Energy Fuels. 2020, 4, 2208-2219 

  43. Guanglei Cui*, Liquan Chen et al. Non-flammable nitrile deep eutectic electrolyte enables high voltage lithium metal batteries. Chem. Mater. 2020, 32, 3405-3413 

  44. Guanglei Cui* et al. Investigation on the Cathodic Interfacial Stability of Nitrile Electrolyte and its performance with High Voltage LiCoO2Chem. Commun. 2020, 56, 4998-5001 

  45. Zhongbin Zhuang* et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Nat. Commun. 2020, 11, 5651 

  46. Tiancun Liu, Yong Wang* et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Materials. 2020, 32, 261–271

  47. X. Yin, Y. Wang* et al. Designing cobalt-based coordination polymers for high-performance sodium and lithium storage: from controllable synthesis to mechanism detection. Materials Today Energy. 2020, 17, 100478

  48. Song Chen, Jintao Zhang* et al. Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003890 

  49. Yanrong Xue, Zhongbin Zhuang* et al. Sulfate-Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reaction Electrocatalyst in Acid. Adv. Funct. Mater. 2021, 31, 2101405

  50. Hong Guo* et al. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Materials. 2021, 40, 139-149

  51. Yang Peng* et al. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR pathway toward High-Efficacy Methane Production. Adv. Mater. 2021, 33, 2101741

  52. Yonggang Wang* et al. Molecular Tailoring of n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. Angew. Chem. Int. Ed. 2021, 60, 20826-20832 

  53. Hongliang Jiang*, Chunzhong Li* et al. Dynamically Formed Surfactant Assembly at the Electrified Electrode–Electrolyte Interface Boosting CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622

  54. Yang Peng* et al. Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63 

  55. Jie Zeng* et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology. 2021, 16, 1386-1393 

  56. Min-Rui Gao* et al. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 1, 259-269 

  57. Shiming Zhou*, Jie Zeng* et al. Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. J. Am. Chem. Soc. 2022, 144,21,9271-9279 

  58. Rui Lin, Jianhui Wang et al. Asymmetric donor-acceptor moleculeregulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 2022, 6, 399–417 

  59. Xiaogang Zhang* et al. Successive Cationic and Anionic (De)-Intercalation/Incorporation into an Ion-Doped Radical Conducting Polymer. Batteries & Supercaps 2019, 2, 979-984

  60. Zhongju Wang, Yongzhu Fu* et al. Biredox‐Ionic Anthraquinone‐Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li‐Organic Batteries. Adv. Sci. 2022, 9, 2103632 

  61. Jintao Zhang* et al. Defect evolution of hierarchical SnO2 aggregatesfor boosting CO2 electrocatalytic reduction. J. Mater. Chem. A. 2021, 9, 14741-14751

  62. Fei Ai, Yijun Lu* et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nature Energy 2022, 7, 417–426 

  63. Zhejun Li, Yijun Lu*et al. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nature Energy 2021, 6, 517–528

  64. Shanshan Lu, Wei Zhou* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426.  

  65. Tieliang Li, Yifu Yu, Bin Zhang* et al. Sulfate-Enabled Nitrate Synthesis from Nitrogen Electrooxidation on Rhodium Electrocatalyst. Angew. Chem. Int. Ed. 2022, e202204541 

  66. Yanbo Li, Bin Zhang, Yifu Yu* et al. Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters 2022, 7, 1187-1194 

  67. Yanmei Huang, Yifu Yu, Bin Zhang* et al. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters 2022, 7, 284-291

  68. Wenfu Xie, Hao Li, Min Wei* et al. NiSn Atomic Pair on Integrated Electrode for Synergistic Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 7382–7388

  69. Rui Sui, Jiajing Pei, Zhongbin Zhuang* et al. Engineering Ag−Nx Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO2 Electroreduction. ACS Appl. Mater. Interfaces 2021, 13, 17736-17744 

  70. Tiliang Li, Yuting Wang, Yifu Yu*, Bin Zhang* et al. Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catal. 2021, 11, 14032-14037

  71. Bin Zhang* et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry 2020, 63, 1469-1476

  72. Jiangwei Shi, Bin Zhang* et al. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China Chemistry 2021, 64, 1493-1497 

  73. Jintao Zhang* et al. Atomic Bridging Structure of  Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2Angew. Chem.Int. Ed. 2022, 61, e202113918

  74. Lang Xu* et al. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO2 Reduction. Angew. Chem.Int. Ed. 2022, 61, e202201166

  75. Bin Zhang* et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem. 2022, 8, 1415-1426

  76. Sheng Dai*, Minghui Zhua*, Yifan Han* et al. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental 2021, 298,

  77. Nan Wang, Yonggang Wang* et al. Zinc-organic Battery with a Wide Operation-temperature Window from -70 to 150°C. Angew. Chem. Int. Ed. 2020,59,14577-14583

  78. Nannan Meng, Yifu Yu, Bin Zhang* et al. Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids. Angew. Chem. Int. Ed. 2019, 58, 18908–18912