中文版 | English 
 

产品分类导航PRODUCTS NAVIGATION

原位电化学红外和原位电化学质谱(DEMS)测试
GSD100高性能在线气相质谱仪
膜进样质谱仪(MIMS)
原位微分电化学质谱仪(电催化)QAS100/PRISMAPRO
原位微分电化学质谱仪(锂离子电池,金属空气电池)
客户应用论文集(国内)
DEMS客户应用论文集(国外)
原位电化学红外光谱
原位电化学拉曼光谱
红外光谱仪真空系统
吡啶吸附红外
原位漫反射红外光谱附件
傅里叶变换红外光谱仪
Pfeiffer Vacuum 真空产品系列
真空应用解决方案
近红外光谱仪
羟值分析仪
电化学池
其他仪器-动态水蒸气吸附仪

联系我们CONTACT US

公司地址

办公地址:

上海市浦东新区兰嵩路555号
森兰美伦大厦A座901室

工厂地址:

上海市青浦区崧泽大道9959

联系电话

021-50670008
15921537961

公司传真

021-50670008

电子邮件

Linglush@163.com(销售)

llmarketing@163.com(市场)

新闻动态

客户论文集-DEMS for 电池(锂离子电池,钠离子电池,锂氧电池,锂二氧化碳电池等)

二次电池(锂离子电池钠离子电池锂氧电池锂二氧化碳电池等)

1. Yue Shen* and Yunhui Huang*. A stable lithium-oxygen battery electrolyte based on fully methylated cyclic ether.Angew. Chem. Int. Ed.2019,58,2345-2349.

2. Yunhui Huang* and Ju Li*. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 2019,12,2991-3000.

3. Bin Wang*.Artificial Solid-Electrolyte Interphase and Bamboo-like N-doped Carbon Nanotube Enabled Highly Rechargeable K-CO2 Batteries. ADVANCED FUNCTIONAL MATERIALS. 26 August 2021

4. Jijing Xu*.Magnetic and Optical Field Multi-Assisted Li-OBatteries with Ultrahigh Energy Efficiency and Cycle Stability. ADVANCED MATERIALS. 13 October 2021

5. Fujun Li*.Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries.Angew. Chem. Int. Ed.2021,DOI:10.1002/anie.202114293

6.Jun Chen*.An Ionic Liquid Electrolyte with Enhanced Li+ Transport Ability Enables Stable Li Deposition for High-Performance Li-O2 Batteries. Angewandte Chemie. Volume60, Issue49, December 1, 2021, Pages 25973-25980

7Prof. Kai-Xue Wang*.Enhanced Electrochemical Performance of Aprotic Li-CO2 Batteries with a Ruthenium-Complex-Based Mobile Catalyst. Angewandte Chemie.Volume60, Issue30, July 19, 2021

8. Xiaoli Dong*,Yonggang Wang*, and Yongyao Xia*. Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables. Energy & Environmental Science. 2021

9.Xiangfeng Liu*. Probing the Self-Boosting Catalysis of LiCoOin Li-O2 Battery with Multiple In suit/Operando Techniques. Adv. Funct. Mater. 2020,2002223.

10. Feng Dang*, Hongchao Wang*, and Biao Kong* Superassembly of Porous Fetet(NiFe)octO Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium-Oxygen Batteries. Adv. Energy Mater. 2020,1904262.

11. Huisheng Peng*. Li-CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 2020, 2001619

12. Longwei Yin*. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batterries. Nature Communications.DOI:10.1038/s41467-020-15416-4.

13. Zhan Lin*. Ultra-Long Life Li-Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries. Angew. Chem. Int. Ed. DOI:10.1002/anie.202000628.

14. Yonggang Wang* and Yongyao Xia. A rechargeable Li-CO2 Battery with a Fel Polymer Electrolyte. Angew. Chem. Int. Ed. 2017,56,9126-9130.

15.Yongyao Xia*.A long life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angew. Chem. Int. Ed. 2017,129,1-6

16. Yunhui Huang*, and Ju Li. Gassing in Sn-Anode Sodium-Ion Batteries and Its Remedy by Metallurgically Prealloying Na. ACS Appl. Mater. Interfaces. DOI:10.1021/acsami.9b05005.

17. Ziyang Guo* . Ru-coated Metal-organic framework-derived Co based particles embedded in porous N-doped carbon nanocube as a Catalytic Cathode for Li−O2 Battery. Chem.Comm. 2019,55,10092-10095.

18. Ziyang Guo*. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials.DOI:10.1016/j.ensm.2019.12.003.

19. Xiaogang Zhang*. A Heavily Surface-Doped Polymer with the Bifunctional Catalytic Mechanism in Li-O2 Batteries. i science.DOI:10.1016/j.isci.2019.03.016.

20. Xiangfeng Liu*. Ultrathin Co3O4 Nanosheets with Edge-Enriched {111} Plane as Efficient Catalysts for Lithium-Oxygen Batteries. ACS Catal.2019,9,3773-3782.

21. Yunhui Huang*, Sa Li, Ju Li. Full-cell Cycling of Self-supporting Aluminum Foil Anode with Phosphate Conversion Coating. ACS Appl. Mater.Interfaces. 2019,11,15656-15661.

22. Yong Yang*. Elucidating and Mitigating the Degradation of Cationic-Anionic Redox Processes in Li1.2Mn0.4Ti0.4O2 Cation-Disordered Cathode Materials. ACS Appl. Mater. Interfaces DOI:10.1021/acsami.9b16011.

23.Yue Shen*, Yunhui Huang*. Oxygen selective membrane based on perflfluoropolyether for Li-Air battery with long cycle life. Energy Storage Materials. DOI:10.1016/j.ensm.2018.11.023.

24. Kai-Xue Wang*, Jie-Sheng Chen. Free–Standing N,Co-Codoped TiO2 Nanoparticles for LiO2–Based Li–O2 Batteries. J. Mater. Chem. A.DOI:10.1039/C9TA08684F.

25.Xiangfeng Liu*. Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. Journal of Catalysis. 384 (2020) 199-207.

26.Yuliang Gao*. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat. https://doi.org/10.1002/inf2.12089

27.Yunhui Huang*. Revisiting the Na2/3Ni1/3Mn2/3O2 Cathode: Oxygen Redox Chemistry and Oxygen Release Suppression. ACS Cent.Sci. DOI.org/10.1021/acscentsci.9b01166.

28. Xiangfeng Liu*.The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials.J. Mater. Chem. A.2020, 8, 7733-7745

29. Feng Dang*, Hongchao Wang*. Novel MoSi2 catalysts featuring surface activation as highly efficient cathode materials for long-life Li-O2 batteries. J. Mater. Chem. A. 2020, 8, 259-267.

30.Yonggang Wang*, and Yongyao Xia .Three-Dimentional Ordered Macroporous FePO4 as High-Efficiency Catalyst for Rechargeable Li-O2 Batteries ACS Appl. Mater. Interfaces 2016, 8, 31638-31645.

31.Jun Wang*. A hierarchical porous carbon supported Pd@Pd4S heterostructure as an efficient catalytic material positive electrode for Li-O2 batteries.Journal of Power Sources.451 (2020) 227738

32.Lei Wang*. A highly reversible long life Li-CO2 Battery with a RuP2-Based Catalytic Cathode. Small.2018,1803246.

33.Tao Zhang*.Inward growth of superthin TiC skin on carbon nanotube framework as stable cathode support for Li-O2 batteries. Energy Storage Materials.30 (2020) 59-66.

34. Wenqing Zhang*,Xiangfeng Liu*, and Jianjun Liu*. Reducing charge overpotential of Li-O2 batteries through band-alignment cathode design. Energy Environ. Sci. 2020, DOI: 10.1039/D0EE01551B. 29

35. Xiangfeng Liu*.A p-Phenylenediamine Oligomer-Mediated Li–O2 Battery with an Extremely Low Charge Potential of 3.1 V.J. Mater. Chem. A. 2020, DOI: 10.1039/D0TA09627J.

36.Hui Tong,* Shuhui Sun*, and Feng Dang*.MoSe2@CNT Core-Shell Nanostructures as Grain Promoters Featuring a Direct Li2O2 Formation/Decomposition Catalytic Capability in Lithium-Oxygen Batteries. Adv. Energy Mater.2021, DOI:10.1002/aenm.202003263

37.Xuefeng Wang*, and Weifeng Wei*. Regulating Anion Redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl. Mater.Interfaces.2021

38.Ya-Qian Lan*.Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries. ACS Central Science. 2021, DOI:10.1021/acscentsci.0c01390

39. Xiaojing Gong*, and Kun Luo*. Impact of a Gold Nanocolloid Electrolyte on Li2O2 Morphology and Performance of a Lithium-Oxygen Battery.ACS Appl. Mater.Interfaces.2021, DOI: 10.1021/acsami.0c20871

40. Zhongjun Li*,Qingchao Liu*.Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. Journal of Power Sources. 495, 229782, 2021

41. Xiangfeng Liu*. Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries.Energy Storage Materials.Volume 38, June 2021, Pages 130-140

42. Xiangfeng Liu*. Tuning Both Anionic and Cationic Redox Chemistry of Li-Rich Li1.2Mn0.6Ni0.2O2 via aThree-in-OneStrategy. Chem. Mater. 2020, 32, 21, 9404-9414

43.Chao Li*, Bingwen Hu*. Anionic redox reaction in Na-deficient layered oxide cathodes: role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR, Energy Storage Materials. 2021, DOI:10.1016/j.ensm.2021.04.007

44.Jianli Cheng*, Huibiao Liu*, Bin Wang*. Rechargeable Li-CO2 Batteries with Graphdiyne as Efficient Metal-Free Cathode Catalysts, Adv. Funct. Mater.2021, DOI:10.1002/adfm.202101423

45.Ziyang Guo*, Lei Wang*.Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based Binder-free cathode. Applied Surface Science.Volume 565, 1 November 2021, 150612

46.Tao Zhang*.Chimerism of Carbon by Ruthenium Induces Gradient Catalysis. Adv. Funct. Mater.2021, 202104011

47.Ji-Jing Xu*.Bio-inspired design of strong self-standing cathode toward highly stable reversible Li-CO2 batteries. Chemical Engineering Journal.Volume 426, 15 December 2021, 131101

48. Tao Zhang*. Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries. Energy Storage Materials.Volume 41, October 2021, Pages 475-484

49. Feng Dang* and Jintao Zhang. Phase modulation of 1T/2H MoSe2 nanoflowers for highly efficient bifunctional electrocatalysis in rechargeable Li-Obatteries. Journal of Materials Chemistry A.2021

50.Ji-Jing Xu*.A Renewable Light-Promoted Flexible Li-CO2 Battery with Ultrahigh Energy Efficiency of 97.9%. Small.Volume17,Issue26, July 1, 2021

51.Zhao Deng*.Wax-Transferred Hydrophobic CVD Graphene Enables Water-Resistant and Dendrite-Free Lithium Anode toward Long Cyle Li-Air Battery. Adv. Sci. 2021.2100488

52.Jun Wang*, Shulei Chou*. Activating MoS2 Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Li-O2 Batteries. ADVANCED FUNCTIONAL MATERIALS. 10 November 2021

53.Feng Dang*, Biao Kong*.Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy Storage Materials. Volume 43, December 2021, Pages 391-401

54.Yaqian Lan*.Single-metal site-embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li-CO2 batteries. Cell Reports Physical Science. Volume 2, Issue 10, 20 October 2021, 100583 54.

55.Yaqian Lan*. A well-defined dual Mn-site based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chemical Communications. 2021, 57, 8937-8940

56.Malin Li*, Jijing Xu*. Localized surface plasmon resonance enhanced electrochemical kinetics and product selectivity in aprotic Li-O2 batteries. Energy Storage Materials. Volume 42, November 2021, Pages 618-627


公司介绍|产品展示|新闻动态|招聘信息|客户留言|联系我们
Copyriht © 2011 上海零露仪器设备有限公司 沪ICP备15022595号-1